

DIO3216B

Digital I/O Card

Software Manual (V2.1)

健昇科技股份有限公司

JS AUTOMATION CORP.

新北市汐止區中興路 100號 6樓

6F., No.100, Zhongxing Rd.,
Xizhi Dist., New Taipei City, Taiwan

TEL：+886-2-2647-6936

FAX：+886-2-2647-6940

http://www.automation.com.tw

http://www.automation-js.com/
E-mail：control.cards@automation.com.tw

http://www.automation.com.tw/
http://www.automation-js.com/
mailto:control.cards@automation.com.tw

 1

Correction record

Manual Version Record

1.0 wdm3216B.sys V1.2

 wdm3216B.dll V1.2

2.0 wdm3216B.sys V2.0

 wdm3216B.dll V2.0

 DIO3216B.dll V2.0

2.1 DIO3216B.dll V2.1 and later

 DIO3216B_WDT_start

 DIO3216B_WDT_stop

 DIO3216B_WDT_read

 DIO3216B_WDT_reset

 DIO3216B_WDT_output_set

 DIO3216B_WDT_output_read

disable the software key function with return value always true

Note: V2.0 and later only for DIO3216B

 2

Contents

1. Special Notes on using DIO3216B as replacement of DIO3216A .. 4

2. How to install the software of DIO3216B ... 5

2.1 Install the PCI driver .. 5

3. Where to find the file you need ... 6

4. About the DIO3216B software .. 7

4.1 What you need to get started ... 7

4.2 Software programming choices ... 7

5. DIO3216B Language support .. 8

5.1 Building applications with the DIO3216B software library .. 8

5.2 DIO3216B Windows libraries ... 8

6. Basic concepts of digital I/O control ... 9

7. Function format and language difference .. 12

7.1 Function format.. 12

7.2 Variable data types ... 13

7.3 Programming language considerations .. 14

8. Flow chart of application implementation ... 16

8.1 DIO3216B Flow chart of application implementation .. 16

9. Software overview and dll function ... 18

9.1 Initialization and close ... 18

DIO3216B_initial .. 18

DIO3216B_close ... 18

DIO3216B_info ... 18

9.2 I/O Port R/W .. 19

DIO3216B_read_port .. 19

DIO3216B_set_port ... 19

DIO3216B_set_out_point .. 20

DIO3216B_read_in_point ... 20

DIO3216B_read_out_point ... 20

DIO3216B_set_debounce_time ... 21

DIO3216B_read_debounce_time .. 21

9.3 Interrupt function ... 22

DIO3216B_enable_IRQ .. 22

DIO3216B_disable_IRQ ... 22

DIO3216B_link_IRQ_process .. 23

DIO3216B_set_IRQ_mask .. 23

DIO3216B_read_IRQ_mask ... 23

DIO3216B_read_IRQ_status ... 24

9.4 Software key function .. 25

DIO3216B_set_password .. 25

 3

DIO3216B_change_password ... 25

DIO3216B_clear_password ... 26

DIO3216B_unlock_security .. 26

DIO3216B_read_security_status ... 26

9.5 WDT (Watch Dog Timer) .. 27

DIO3216B_WDT_output_set .. 28

DIO3216B_WDT_output_read ... 28

DIO3216B_WDT_start .. 28

DIO3216B_WDT_stop .. 29

DIO3216B_WDT_reset ... 29

DIO3216B_WDT_read .. 29

9.6 Error conditions ... 30

10. Dll list .. 31

11. DIO3216B Error code table ... 32

 4

1. Special Notes on using DIO3216B as replacement of DIO3216A

DIO3216B is not fully software compatible with the previous model DIO3216A, but the major

digital I/O functions is the same. If you use DIO3216A in your application before and now for the repair

purpose, you use DIO3216B, you must confirm and take the following procedures to ensure the success

of replacement.

1. Make sure that your old applications only use the digital I/O functions, if not, you can not

replace the old card with DIO3216B

2. You must install the DIO3216B driver to replace the old driver. The new driver has build in

digital I/O functions under the same syntax of old card. Please refer the DIO3216B.h file for

more detail information. Under this condition, you do not need to re-compile your application

program.

3. If you can re-compile your application program, we suggest you to use new function syntax

with the DIO3216B card, refer the functions described at this manual.

 5

2. How to install the software of DIO3216B

2.1 Install the PCI driver

The PCI card is a plug and play card, once you add on a new card, the window system will detect

while it is booting. Please follow the following steps to install your new card.

In WinXP/7 and up system you should: (take Win XP as example)

1. Make sure the power is off

2. Plug in the interface card

3. Power on

4. A hardware install wizard will appear and tell you it finds a new PCI card

5. Do not response to the wizard, just Install the file

(..\DIO3216B\Software\WinXP_7\ or if you download from website please execute the file

DIO3216B_Install.exe to get the file)

6. After installation, power off

7. Power on, it’s ready to use

For more detail of step by step installation guide, please refer the file “installation.pdf “ on the CD

come with the product or register as a member of our user’s club at:

http://automation.com.tw/

to download the complementary documents.

http://automation.com.tw/

 6

3. Where to find the file you need

WinXP/7 and up

The directory will be located at

.. \ JS Automation \DIO3216B\API (header files and lib files for VB,VC,BCB,C#)

.. \ JS Automation \DIO3216B\Driver (backup copy of DIO3216B drivers)

.. \ JS Automation \DIO3216B\exe (demo program and source code)

The system driver is located at ..\system32\Drivers and the DLL is located at ..\system.

For your easy startup, the demo program with source code demonstrates the card functions and help

file.

 7

4. About the DIO3216B software

DIO3216B software includes a set of dynamic link library (DLL) and system driver that you can

utilize to control the I/O card’s ports and points separately.

Your DIO3216B software package includes setup driver, tutorial example and test program that help

you how to setup and run appropriately, as well as an executable file which you can use to test each of

the DIO3216B functions within Windows’ operation system environment.

4.1 What you need to get started

To set up and use your DIO3216B software, you need the following:

 DIO3216B software

 DIO3216B hardware

Main board

Wiring board (Option)

4.2 Software programming choices

You have several options to choose from when you are programming DIO3216B software. You can

use Borland C/C++, Microsoft Visual C/C++, Microsoft Visual Basic, or any other Windows-based

compiler that can call into Windows dynamic link libraries (DLLs) for use with the DIO3216B software.

 8

5. DIO3216B Language support

The DIO3216B software library is a DLL used with WinXP/7 and up. You can use these DLL with

any Windows integrating development environment that can call Windows DLLs.

5.1 Building applications with the DIO3216B software library

The DIO3216B function reference topic contains general information about building DIO3216B

applications, describes the nature of the DIO3216B files used in building DIO3216B applications, and

explains the basics of making applications using the following tools:

Applications tools

 Microsoft Visual C/C++

 Borland C/C++

 Microsoft Visual C#

 Microsoft Visual Basic

 Microsoft VB.net

If you are not using one of the tools listed, consult your development tool reference manual for

details on creating applications that call DLLs.

5.2 DIO3216B Windows libraries

The DIO3216B for Windows function library is a DLL called DIO3216B.dll. Since a DLL is used,

DIO3216B functions are not linked into the executable files of applications. Only the information about

the DIO3216B functions in the DIO3216B import libraries is stored in the executable files.

Import libraries contain information about their DLL-exported functions. They indicate the presence and

location of the DLL routines. Depending on the development tools you are using, you can make your

compiler and linker aware of the DLL functions through import libraries or through function

declarations.

Refer to Table 1 to determine to which files you need to link and which to include in your

development to use the DIO3216B functions in DIO3216B.dll.

Header Files and Import Libraries for Different Development Environments

Language Header File Import Library

Microsoft Visual C/C++ DIO3216B.h DIO3216BVC.lib

Borland C/C++ DIO3216B.h DIO3216BBC.lib

Microsoft Visual C# DIO3216B.cs

Microsoft Visual Basic DIO3216B.bas

Microsoft VB.net DIO3216B.vb

Table 1

 9

6. Basic concepts of digital I/O control

The digital I/O control is the most common type of PC based application. For example, on the main

board, printer port is the TTL level digital I/O.

Types of I/O calssified by isolation

If the system and I/O are not electrically connected, we call it is isolated. There are many kinds of

isolation: by transformer, by photo-coupler, by magnetic coupler,… Any kind of device, they can brake

the electrical connection without braking the signal is suitable for the purpose.

Currently, photo-coupler isolation is the most popular selection, isolation voltage up to 2000V or

over is common. But the photo-coupler is limited by the response time, the high frequency type cost a

lot. The new selection is magnetic coupler, it is design to focus on high speed application.

The merit of isolation is to avoid the noise from outside world to enter the PC system, if the noise

comes into PC system without elimination, the system maybe get “crazy” by the noise disturbance. Of

course the isolation also limits the versatile of programming as input or output at the same pin as the

TTL does. The inter-connection of add-on card and wiring board maybe extend to several meters

without any problem.

The non-isolated type is generally the TTL level input/output. The ground and power source of the

input/output port come from the system. Generally you can program as input or output at the same pin as

you wish. The connection of wiring board and the add-on board is limited to 50cm or shorter

(depends on the environmental noise condition).

Types of Output calssified by driver device

There are several devices used as output driver, the relay, transistor or MOS FET, SCR and SSR.

Relay is electric- mechanical device, it life time is about 1,000,000 times of switching. But on the

other hand it has many selections such as high voltage or high current. It can also be used to switch DC

load or AC load.

Transistor and MOS FET are basically semi-permanent devices. If you have selected the right

ratings, it can work without switching life limit. But the transistor or MOS FET can only work in DC

load condition.

The transistor or MOS FET also have another option is source or sink. For PMOS or PNP transistor

is source type device, the load is one terminal connects to output and another connects to common

ground, but NPN or NMOS is one terminal connects to output and the other connects to VCC+. If you

are concerned about hazard from high DC voltage while the load is floating, please choose the

source type driver device.

SCR (or triac) is seldom direct connect to digital output, but his relative SSR is the most often

selection. In fact, SSR is a compact package of trigger circuit and triac. You can choose zero cross

trigger (output command only turn on the output at power phase near zero to eliminate surge) or direct

turn on type. SSR is working in AC load condition.

 10

Input debounce

 Debounce is the function to filter the input jitters. From the microscope view of a switch input, you

will see the contact does not come to close or release to open clearly. In most cases, it will

contact-release-contact-release… for many times then go to steady state (ON or OFF). If you do not

have the debounce function, you will read the input at high state and then next read will get low state,

this maybe an error data for your decision of contact input.

 Debounce can be implemented by hardware or software. Analog hardware debounce circuit will

have fixed time constant to filter out the significant input signal, if you want to change the response time,

the only way is to change the circuit device.

 If digital debounce is implemented, maybe several filter frequency you can choose. To choose the

filter frequency, please keep the Nyquist–Shannon sampling theorem in mind: filter sample frequency

must at least twice of the input frequency. The following sample is a bad selection of debounce filter, the

input frequency is not as low as les than half of the sample frequency, the output will generate a beat

frequency.

<- Input frequency at 835Hz

<- Output of digital filter,

 Please note the beat frequency.

Digital debounce circuit work at 1KHZ sample rate and observe the output of filter from 835Hz input

Software debounce will consumes the CPU time a lot, we do not recommend to use except for you

really know you want.

Input interrupt

 You can scan the input by polling, but the CPU will spend a lot of time to do null task. Another way

is use a timer to sample the input at adequate time (remind the Nyquist–Shannon sampling theorem, at

least double of the input frequency). The third one is directly allows the input to generate interrupt to

CPU. To use direct interrupt from input, the noise coupled from input must take special care not to

mal-trigger the interrupt.

 11

Read back of Output status

 Some applications need to read back the output status, if the card do not provide output status read

back, you can use a variable to store the status of output before you really command it output. Some

cards provide the read back function but please note that the read back status is come from the output

register, not from the real physical output.

 12

7. Function format and language difference

7.1 Function format

Every DIO3216B function is consist of the following format:

Status = function_name (parameter 1, parameter 2, … parameter n);

Each function returns a value in the Status global variable that indicates the success or failure of the

function. A returned Status equal to zero that indicates the function executed successfully. A non-zero

status indicates failure that the function did not execute successfully because of an error, or executed

with an error.

Note : Status is a 32-bit unsigned integer.

The first parameter to almost every DIO3216B function is the parameter CardID which is located

the driver of DIO3216B board you want to use those given operation. The CardID is assigned by

DIP/ROTARY SW. You can utilize multiple devices with different card CardID within one application;

to do so, simply pass the appropriate CardID to each function.

Note: CardID is set by DIP/ROTARY SW (0x0-0xF)

These topics contain detailed descriptions of each DIO3216B function. The functions are arranged

alphabetically by function name. Refer to DIO3216B Function Reference for additional information.

 13

7.2 Variable data types

Every function description has a parameter table that lists the data types for each parameter. The

following sections describe the notation used in those parameter tables and throughout the manual for

variable data types.

Primary Type Names

Name Description Range C/C++ Visual BASIC
Pascal

(Borland Delphi)

u8 8-bit ASCII

character

0 to 255 char Not supported by BASIC.

For functions that require

character arrays, use

string types instead.

Byte

I16 16-bit signed

integer

-32,768 to 32,767 short Integer (for example:

deviceNum%)

SmallInt

U16 16-bit

unsigned

integer

0 to 65,535 unsigned

short for

32-bit

compilers

Not supported by BASIC.

For functions that require

unsigned integers, use the

signed integer type

instead. See the i16

description.

Word

I32 32-bit signed

integer

-2,147,483,648 to

2,147,483,647

long Long (for example:

count&)

LongInt

U32 32-bit

unsigned

integer

0 to

4,294,967,295

unsigned

long

Not supported by BASIC.

For functions that require

unsigned long integers,

use the signed long

integer type instead. See

the i32 description.

Cardinal (in 32-bit

operating

systems). Refer to

the i32

description.

F32 32-bit

single-precisio

n

floating-point

value

-3.402823E+38 to

3.402823E+38

float Single (for example:

num!)

Single

F64 64-bit

double-precisi

on

floating-point

value

-1.797683134862315

E+308 to

1.797683134862315E

+308

double Double (for example:

voltage Number)

Double

Table 2

 14

7.3 Programming language considerations

Apart from the data type differences, there are a few language-dependent considerations you need to

be aware of when you use the DIO3216B API. Read the following sections that apply to your

programming language.

Note: Be sure to include the declaration functions of DIO3216B prototypes by including the appropriate

DIO3216B header file in your source code. Refer to Building Applications with the DIO3216B Software

Library for the header file appropriate to your compiler.

7.3.1 C/C++

For C or C++ programmers, parameters listed as Input/Output parameters or Output parameters are

pass-by-reference parameters, which means a pointer points to the destination variable should be passed

into the function. For example, the Read Port function has the following format:

Status = DIO3216B_read_port(u8 CardID, u8 port, u8*data);

where CardID and port are input parameters, and data is an output parameter. Consider the following

example:

u8 CardID, port;

u8 data,

u32 Status;

Status = DIO3216B_read_port (CardID, port, &data);

7.3.2 Visual basic

The file DIO3216B.bas contains definitions for constants required for obtaining DIO Card

information and declared functions and variable as global variables. You should use these constants

symbols in the DIO3216B.bas, do not use the numerical values.

In Visual Basic, you can add the entire DIO3216B.bas file into your project. Then you can use

any of the constants defined in this file and call these constants in any module of your program. To add

the DIO3216B.bas file for your project in Visual Basic 4.0, go to the File menu and select the Add File...

option. Select DIO3216B.bas, which is browsed in the DIO3216B \ API directory. Then, select Open to

add the file to the project.

To add the DIO3216B.bas file to your project in Visual Basic 5.0 and 6.0, go to the Project menu

and select Add Module. Click on the Existing tab page. Select DIO3216B.bas, which is in the

DIO3216B \ API directory. Then, select Open to add the file to the project.

 15

7.3.3 Borland C++ builder

To use Borland C++ builder as development tool, you should generate a .lib file from the .dll file

by implib.exe.

 implib DIO3216BBC.lib DIO3216B.dll

Then add the DIO3216BBC.lib to your project and add

#include “DIO3216B.h” to main program.

Now you may use the dll functions in your program. For example, the Read Port function has the

following format:

Status = DIO3216B_read_port(u8 CardID, u8 port, u8*data);

where CardID and port are input parameters, and data is an output parameter. Consider the following

example:

u8 CardID, port;

u8 data;

u32 Status;

Status = DIO3216B_read_port (CardID, port, &data);

 16

8. Flow chart of application implementation

8.1 DIO3216B Flow chart of application implementation

 17

 18

9. Software overview and dll function

9.1 Initialization and close

You need to initialize system resource each time you run your application.

 DIO3216B_initial() will do.

 Once you want to close your application, call

 DIO3216B_close() to release all the resource.

 If you want to know the physical address assigned by OS. Use

 DIO3216B_info() to get the address .

 DIO3216B_initial

Format : u32 status =DIO3216B_initial (void)

Purpose: Initial the DIO3216B resource when start the Windows applications.

 DIO3216B_close

Format : u32 status =DIO3216B_close (void);

Purpose: Release the DIO3216B resource when close the Windows applications.

 DIO3216B_info

Format : u32 status =DIO3216B_info(u8 CardID, u16 *address);

Purpose: Read the physical I/O address assigned by O.S.

Parameters:

Input:

Name Type Description

CardID u8 assigned by DIP/ROTARY SW

Output:

Name Type Description

address u16 physical I/O address assigned by OS

 19

9.2 I/O Port R/W

Use the following functions for I/O port output value reading and control:

 DIO3216B_read_port() to read a byte data from I/O port,

 DIO3216B_set_port() to output byte data to output port,

 DIO3216B_set_out_point() to set output bit,

 DIO3216B_read_in_point() to read I/O bit,

 DIO3216B_read_out_point() to read back output bit.

 Mechanical contact or noisy environment always induced unstable state at digital input, the

DIO3216B provides software selectable debounce function (the former digital IO cards use hardware

debounce and fixed at one frequency). You can filter out the pulse width at 10ms (100Hz), 5ms (200Hz),

1ms (1KHz) or no filter as you need.

 Use DIO3216B_set_debounce_time() to select the debounce frequency and read back the setting

by DIO3216B_read_debounce_time().

 DIO3216B_read_port

Format : u32 status = DIO3216B_read_port (u8 CardID , u8 port , u8 *data)

Purpose: Read the output values of the I/O port.

Parameters:

Input:

Name Type Description

CardID u8 assigned by Rotary SW

port u8 port number

0: input port IN00-IN07

1: input port IN10-IN17

2: output port OUT00-OUT07

3: output port OUT10-OUT17

Output:

Name Type Description

data u8 I/O data

 DIO3216B_set_port

Format : u32 status = DIO3216B_set_port (u8 CardID,u8 port, u8 data)

Purpose: Sets the output data.

Parameters:

Input:

Name Type Description

CardID u8 assigned by Rotary SW

port u8 2: output port for OUT00-OUT07

3: output port for OUT10-OUT17

data u8 bitmap of output values

 20

 DIO3216B_set_out_point

Format : u32 status =DIO3216B_set_out_point(u8 CardID, u8 point, u8 state)

Purpose: Sets the bit data of output port.

Parameters:

Input:

Name Type Description

CardID u8 assigned by Rotary SW

point u8 point number

0~7 for OUT00-OUT07

8~15 for OUT10-OUT17

state u8 state of output point

 DIO3216B_read_in_point

Format : u32 status =DIO3216B_read_in_point(u8 CardID, u8 point, u8 *state)

Purpose: Read the input state of the input points.

Parameters:

Input:

Name Type Description

CardID u8 assigned by Rotary SW

point u8 point number of input

0~7 forIN00-IN07

8~15 for IN10-IN17

Output:

Name Type Description

state u8 state of point of input

 DIO3216B_read_out_point

Format : u32 status =DIO3216B_read_out_point(u8 CardID, u8 point, u8 *state)

Purpose: Read the output state of the output points.

Parameters:

Input:

Name Type Description

CardID u8 assigned by Rotary SW

point u8 point number

0~7 for OUT00-OUT07

8~15 for OUT10-OUT17

Output:

Name Type Description

state u8 state of output point

 21

 DIO3216B_set_debounce_time

Format : u32 status = DIO3216B_set_debounce_time (u8 CardID , u8 port ,

u8 debounce_mode)

Purpose: Set the input port debounce time

Parameters:

Input:

Name Type Description

CardID u8 assigned by Rotary SW

port u8 port number

0: input port0 for IN00-IN07

1: input port1 for IN10-IN17

debounce_mode u8 Debounce time selection:

0: no debounce

1: filter out over 100Hz

 (default)

2: filter out over 200Hz

3: filter out over 1KHz

 DIO3216B_read_debounce_time

Format : u32 status = DIO3216B_read_debounce_time (u8 CardID , u8 port ,

u8 *debounce_mode)

Purpose: Read the input port debounce time setting

Parameters:

Input:

Name Type Description

CardID u8 assigned by Rotary SW

port u8 port number

0: input port0 for IN00-IN07

1: input port1 for IN10-IN17

Output:

Name Type Description

debounce_mode u8 Debounce time selection:

0: no debounce

1: filter out over 100Hz

 (default)

2: filter out over 200Hz

3: filter out over 1KHz

 22

9.3 Interrupt function

Sometimes you want your application to take care of the I/O while special event occurs, interrupt

function is the right choice. DIO3216B provide IN00 and IN01 as external event trigger input. To use it,

first of all you must enable IRQ function by:

 DIO3216B_enable_IRQ().

If you do not use interrupt any more and you will close your application program, be sure to use

 DIO3216B_disable_IRQ() to release the resource.

Next tell the driver your interrupt service routine by

 DIO3216B_link_IRQ_process()

Finally you should enable / disable the hardware of the interrupt source,

 DIO3216B_set_IRQ_mask() will do and your program is waiting an interrupt to service.

 DIO3216B_read_IRQ_mask() to read back the setting.

 In interrupt service routine, if you want to know the interrupt status, use

 DIO3216B_read_IRQ_status() to identify the source of interrupt.

 For the application program do not use interrupt, you can also use

 DIO3216B_read_IRQ_status() as fast response input latch. You just

 DIO3216B_set_IRQ_mask() to setup the points you want to monitor and polling by

 DIO3216B_read_IRQ_status() to check the input. After reading, the status on card will

automatically cleared.

 DIO3216B_enable_IRQ

Format : u32 status = DIO3216B_enable_IRQ (u8 CardID, HANDLE *phEvent)

Purpose: Enable interrupt from selected source

Parameters:

Input:

Name Type Description

CardID u8 assigned by Rotary SW

Output:

Name Type Description

phEvent HANDLE event handle

 DIO3216B_disable_IRQ

Format : u32 status = DIO3216B_disable_IRQ (u8 CardID)

Purpose: Disable interrupt from selected source

Parameters:

Input:

Name Type Description

CardID u8 assigned by Rotary SW

 23

 DIO3216B_link_IRQ_process

Format : u32 status = DIO3216B_link_IRQ_process (u8 CardID,

void (__stdcall *callbackAddr)(u8 CardID));

Purpose: Link irq service routine to driver

Parameters:

Input:

Name Type Description

CardID u8 assigned by Rotary SW

callbackAddr void callback address of service

routine

 DIO3216B_set_IRQ_mask

Format : u32 status = DIO3216B_set_IRQ_mask (u8 CardID, u8 mask)

Purpose: Mask interrupt from IN00~ IN07

Parameters:

Input:

Name Type Description

CardID u8 assigned by Rotary SW

mask u8 Bit0 =0 disable irq from IN00

 =1 enable irq from IN00

Bit1 =0 disable irq from IN01

 =1 enable irq from IN01

….

Bit7 =0 disable irq from IN07

 =1 enable irq from IN07

 DIO3216B_read_IRQ_mask

Format : u32 status = DIO3216B_read_IRQ_mask (u8 CardID, u8 *mask)

Purpose: Read back the mask of interrupt

Parameters:

Input:

Name Type Description

CardID u8 assigned by Rotary SW

Output:

Name Type Description

mask u8 Bit0 =0 disable irq from IN00

 =1 enable irq from IN00

Bit1 =0 disable irq from IN01

 =1 enable irq from IN01

….

Bit7 =0 disable irq from IN07

 =1 enable irq from IN07

 24

 DIO3216B_read_IRQ_status

Format : u32 status = DIO3216B_read_IRQ_status (u8 CardID, u8 *Event_Status)

Purpose: To read back the interrupt source to identify IN00~ IN07

Parameters:

Input:

Name Type Description

CardID u8 assigned by Rotary SW

Output:

Name Type Description

Event_Status u8 Bit0 =1 irq from IN00

Bit1 =1 irq from IN01

….

Bit7 =1 irq from IN07

Note:

1. This command can be used in non-interrupt application for scanning the input change, but

once you read the status, the on chip register will also be cleared for next transition input.

2. For interrupt application, you can read the status for identification of interrupt sources to

determine the response you want to take.

 25

9.4 Software key function

From the dll version 4.0 and later, we remove the software key function owing to some

customers complained about the card locked on some unknown occasion. We only remain the

functions to comply with the existing programs but the returned value always true.

Since DIO3216B is a general purpose card, anyone who can buy from JS automation Corp. or her

distributors. Your program is the fruit of your intelligence, un-authorized copy maybe prevent by the

security function enabled.

You can use

 DIO3216B_set_password() to set password and start the security function.

 DIO3216B_change_password() to change it.

If you don’t want to use security function after the password being setup,

 DIO3216B_clear_password() will reset to the virgin state.

Once the password is set, any function call of the dll’s (except for the security functions) will be

blocked until the

 DIO3216B_unlock_security() unlock the security.

You can also use

 DIO3216B_read_security_status() to check the current status of security.

 DIO3216B_set_password

Format : u32 status = DIO3216B_set_password(u8 CardID,u16 password[5]);

Purpose: To set password and if the password is not all “0”, security function will be enabled.

Parameters:

Input:

Name Type Description

CardID u8 assigned by DIP/ROTARY SW

password[5] u16 Password, 5 words

Note on password:

If the password is all “0”, the security function is disabled.

 DIO3216B_change_password

Format : u32 status = DIO3216B_change_password(u8 CardID,u16 Oldpassword[5],

u16 password[5]);

Purpose: To replace old password with new password.

Parameters:

Input:

Name Type Description

CardID u8 assigned by DIP/ROTARY SW

Oldpassword [5] u16 The previous password

password[5] u16 The new password to be set

 26

 DIO3216B_clear_password

Format : u32 status = DIO3216B_clear_password(u8 CardID,u16 password[5])

Purpose: To clear password, to set password to all “0”, i.e. disable security function.

Parameters:

Input:

Name Type Description

CardID u8 assigned by DIP/ROTARY SW

password[5] u16 The password previous set

 DIO3216B_unlock_security

Format : u32 status = DIO3216B_unlock_security(u8 CardID,u16 password[5])

Purpose: To unlock security function and enable the further operation of this card

Parameters:

Input:

Name Type Description

CardID u8 assigned by DIP/ROTARY SW

password[5] u16 The password previous set

 DIO3216B_read_security_status

Format : u32 status = DIO3216B_read_security_status(u8 CardID,u8 *lock_status,

u8 *security_enable);

Purpose: To read security status for checking if the card security function is unlocked.

Parameters:

Input:

Name Type Description

CardID u8 assigned by DIP/ROTARY SW

Output:

Name Type Description

lock_status u8 0: security unlocked

1: locked

2: dead lock (must return to original maker

to unlock)

security_enable u8 0: security function disabled

1: security function enabled

Note on security status:

The security should be unlocked before using any other function of the card, and any attempt to

unlock with the wrong passwords more than 10 times will cause the card at dead lock status. Any further

operation even with the correct password will not unlock the card. The only way is to send back to the

card distributor or the original maker to unlock to virgin state.

 27

9.5 WDT (Watch Dog Timer)

For some special case, your system maybe hung by unknown reasons and leave your control

program run at un-predict condition. This may damage the device under control or hurts human. To

prevent the abnormal conditions using a WDT (watch dog timer) is an intelligent approach. The WDT is

a special hardware timer, proving a fixed time to down count, once it is time up, it will reset the system

or do some action predefined by hardware. To prevent the WDT time up, you must intend to reset the

timer before it time up.

The on card WDT does not intend to reset the computer but only block the IO operation and

overrides a predefined output to prevent further damage.

Before start the WDT, you must setup the predefined output during WDT block the IO operation.

Of course the output is based on the system protection and alarm generation. Using

 DIO3216B_WDT_output_set() to set up the output at abnormal occurs and read back by

 DIO3216B_WDT_output_read()

After the predefined output setup, you can start the WDT with it time constant and working mode

by: DIO3216B_WDT_start() and stop the WDT operation by:

 DIO3216B_WDT_stop()

If the WDT in manual working mode, the user must reset before it is time up. This means if your

application is alive, the WDT will reset before it is time up.

 DIO3216B_WDT_reset() will do.

To read the WDT time constant or timer value on the fly, using

 DIO3216B_WDT_read()

 28

 DIO3216B_WDT_output_set

Format : u32 status = DIO3216B_WDT_output_set(u8 CardID, u8 output);

Purpose: To set WDT default output on OUT00~OUT07.

Parameters:

Input:

Name Type Description

CardID u8 assigned by DIP/ROTARY SW

output u8 WDT default output data on OUT0~OUT07

 DIO3216B_WDT_output_read

Format : u32 status = DIO3216B_WDT_output_read(u8 CardID,u8 *output);

Purpose: To read back WDT output on OUT00~OUT07.

Parameters:

Input:

Name Type Description

CardID u8 assigned by DIP/ROTARY SW

Output:

Name Type Description

output u8 WDT default output data (OUT00~OUT07)

 DIO3216B_WDT_start

Format : u32 status = DIO3216B_WDT_start(u8 CardID, u16 WDT_time_constant,

u8 WDT_mode);

Purpose: To start WDT function.

Parameters:

Input:

Name Type Description

CardID u8 assigned by DIP/ROTARY SW

WDT_time_

constant

u16 time constant of WDT timer at 1ms time base

WDT_mode u8 0: auto mode, user no need to reset WDT, the

driver will auto reset WDT on every

0.5*WDT_time_constant

1: manual mode, user must reset WDT before its

time up

 29

 DIO3216B_WDT_stop

Format : u32 status = DIO3216B_WDT_stop(u8 CardID);

Purpose: To stop WDT function.

Parameters:

Input:

Name Type Description

CardID u8 assigned by DIP/ROTARY SW

 DIO3216B_WDT_reset

Format : u32 status = DIO3216B_WDT_reset(u8 CardID);

Purpose: To reset WDT timer, used for manual mode.

Parameters:

Input:

Name Type Description

CardID u8 assigned by DIP/ROTARY SW

 DIO3216B_WDT_read

Format : u32 status = DIO3216B_WDT_read(u8 CardID, u8 index, u16 *data);

Purpose: To read back WDT related registers.

Parameters:

Input:

Name Type Description

CardID u8 assigned by DIP/ROTARY SW

index u8 0: start/stop

1: WDT time constant

2: WDT timer on the fly

Output:

Name Type Description

data u16 if index=0,

 data=0, WDT stops

 data=1, WDT run

if index=1,

 data=1~65535, the preset WDT time constant

if index=2,

 data=0~65535, the WDT time on the fly

 30

9.6 Error conditions

DIO3216 cards minimize error conditions. There are three possible fatal failure modes:

 System Fail Status Bit Valid

 Communication Loss

 Hardware not ready

These error types may indicate an internal hardware problem on the board. Error Codes contains a

detailed listing of the error status returned by DIO3216B functions.

 31

10. Dll list

 Function Name Description

1. DIO3216B_initial() DIO3216B Initial

2. DIO3216B_close() DIO3216B Close

3. DIO3216B_info() get OS. Assigned address

4. DIO3216B_read_port() Read Port Data (word)

5. DIO3216B_set_port() Set Output port(word)

6. DIO3216B_set_out_point() Set Output Point State(bit)

7. DIO3216B_read_in_point() Read Input Point State(bit)

8. DIO3216B_read_out_point() Read Output Point State(bit)

9. DIO3216B_set_debounce_time() Set input port debounce time

10. DIO3216B_read_debounce_time() Read input port debounce time

11. DIO3216B_enable_IRQ() Enable interrupt function

12. DIO3216B_disable_IRQ() Disable interrupt function

13. DIO3216B_link_IRQ_process() Link interrupt service routine to driver

14. DIO3216B_set_IRQ_mask() Set interrupt mask

15. DIO3216B_read_IRQ_mask()

16. DIO3216B_read_IRQ_status() Read back irq status

17. DIO3216B_set_password() Set software key

18. DIO3216B_change_password() Change software key

19. DIO3216B_clear_password() Clear software key

20. DIO3216B_unlock_security() Unlock software key

21. DIO3216B_read_security_status() Read software key status

22. DIO3216B_WDT_output_set() set WDT default output on OUT00~OUT07

23. DIO3216B_WDT_output_read() read back WDT output on OUT00~OUT07

24. DIO3216B_WDT_start() start WDT function with time constant and working mode

25. DIO3216B_WDT_stop() stop WDT function

26. DIO3216B_WDT_reset() reset WDT timer

27. DIO3216B_WDT_read() read back WDT related registers

 32

11. DIO3216B Error code table

Error

Code Symbolic Name Description

0 JSDRV_NO_ERROR No error.

2 JSDRV_INIT_ERROR Driver initial error

3 JSDRV_UNLOCK_ERROR Software key unlock error

4 JSDRV_LOCK_COUNTER_ERROR Software key unlock error count over

5 JSDRV_SET_SECURITY_ERROR Software key setting error

100 DEVICE_RW_ERROR Device Read/Write error

101 JSDRV_NO_CARD No DIO3216B card on the system.

102 JSDRV_DUPLICATE_ID DIO3216B CardID duplicate error.

300 JSDIO_ID_ERROR Function input parameter error. CardID

setting error, CardID doesn’t match the DIP

SW setting

301 JSDIO_PORT_ERROR Function input parameter error.

Parameter out of range.

302 JSDIO_IN_POINT_ERROR Function input parameter error.

Parameter out of range.

303 JSDIO_OUT_POINT_ERROR Function input parameter error.

Parameter out of range.

304 JSDIO_VERSION_ERROR Hardware version can not match with

software version

306 JSDIO_DEBOUNCE_MODE_ERRO

R

Bad debounce time parameter

	Correction record
	Contents
	1. Special Notes on using DIO3216B as replacement of DIO3216A
	2. How to install the software of DIO3216B
	2.1 Install the PCI driver

	3. Where to find the file you need
	4. About the DIO3216B software
	4.1 What you need to get started
	4.2 Software programming choices

	5. DIO3216B Language support
	5.1 Building applications with the DIO3216B software library
	5.2 DIO3216B Windows libraries

	6. Basic concepts of digital I/O control
	7. Function format and language difference
	7.1 Function format
	7.2 Variable data types
	7.3 Programming language considerations

	8. Flow chart of application implementation
	8.1 DIO3216B Flow chart of application implementation

	9. Software overview and dll function
	9.1 Initialization and close
	DIO3216B_initial
	DIO3216B_close
	DIO3216B_info

	9.2 I/O Port R/W
	DIO3216B_read_port
	DIO3216B_set_port
	DIO3216B_set_out_point
	DIO3216B_read_in_point
	DIO3216B_read_out_point
	DIO3216B_set_debounce_time
	DIO3216B_read_debounce_time

	9.3 Interrupt function
	DIO3216B_enable_IRQ
	DIO3216B_disable_IRQ
	DIO3216B_link_IRQ_process
	DIO3216B_set_IRQ_mask
	DIO3216B_read_IRQ_mask
	DIO3216B_read_IRQ_status

	9.4 Software key function
	DIO3216B_set_password
	DIO3216B_change_password
	DIO3216B_clear_password
	DIO3216B_unlock_security
	DIO3216B_read_security_status

	9.5 WDT (Watch Dog Timer)
	DIO3216B_WDT_output_set
	DIO3216B_WDT_output_read
	DIO3216B_WDT_start
	DIO3216B_WDT_stop
	DIO3216B_WDT_reset
	DIO3216B_WDT_read

	9.6 Error conditions

	10. Dll list
	11. DIO3216B Error code table

